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Abstract

Unsupervised domain adaptation deals with scenarios in
which labeled data are available in the source domain, but
only unlabeled data can be observed in the target domain
of interest. Since using the classifiers trained by source-
domain data would not be expected to generalize well in
the target domain, how to transfer the label information
from source to target-domain data becomes a challenging
task. In this paper, we aim at adapting features of cross-
domain data so that the differences between the associated
marginal and conditional distributions can be suppressed.
In particular, for unlabeled target-domain data, we pro-
pose to utilize the label information inferred from the source
domain, while the observed structural information in the
target domain will be exploited for adaptation purposes.
With such cross-domain knowledge, our proposed model not
only reduces the mismatch between domains for adaptation
purposes, improved recognition of target-domain data can
be achieved simultaneously. Experiments on benchmark
datasets will verify the effectiveness of our method, which is
shown to outperform several state-of-the-art domain adap-
tation approaches.

1. Introduction

In many real-world classification tasks, one cannot ex-
pect that the data to be recognized always exhibit the same
or similar distribution as the training data does. The dis-
tribution mismatch between training and test data typically
comes from the fact that such data are collected from differ-
ent domains (e.g., videos captured by cameras at different
views, images taken by cameras with different resolutions,
etc.) [23, 20]. For the above scenarios, classifiers learned
from training data cannot be expected to generalize well
when recognizing test data.

To address the aforementioned problems, researchers ad-
vance the idea of domain adaptation and aim at associating
cross-domain data for recognition purposes. If the differ-
ence between source and target domains can be eliminated,
test data observed in the target domain can be recognized
by source-domain training data accordingly. Thus, domain
adaptation and its applications has been widely exploited in

computer vision [20, 16, 9] and machine learning [22, 7, 18]
communities.

Depending on the availability of labeled data in the tar-
get domain, domain adaptation approaches can be generally
divided into two different categories. For semi-supervised
domain adaptation [20, 4], one can collect source-domain
labeled data in advance, but only a small amount of la-
beled data can be observed in the target domain. Given
such cross-domain data and label information, the task is to
recognize the remaining target-domain data. On the other
hand, unsupervised domain adaptation [9, 16] deals with
totally unlabeled target-domain data, with only labeled data
available in the source domain. In this paper, we focus on
unsupervised domain adaptation.

Among existing domain adaptation methods, the most
common strategy is to derive feature representations for
reducing the domain differences [16, 22, 18, 9], so that
recognition can be performed in the resulting feature spaces.
While some advocated the adaptation of marginal distribu-
tions across data domains [18, 22], several works have been
proposed to further adapt both marginal and conditional dis-
tributions for improved performance [26, 16]. It is worth
noting that, however, adaptation of conditional distributions
is not trivial for unsupervised domain adaptation problems.
This is because that, only unlabeled data can be observed in
the target domain. Therefore, how to properly transfer the
source-domain label information to the target domain for
associating cross-domain data becomes a challenging task.

As noted above, we particularly address the unsuper-
vised domain adaptation problem in this paper. The
overview of our proposed method is shown in Fig-
ure 1. Motivated by existing Maximum Mean Discrepancy
(MMD) [11] based feature adaption approaches, we pro-
pose to exploit the structural information of target-domain
data, together with the label information transferred from
the source domain. By utilizing such extensive cross-
domain knowledge, we approach domain adaptation by
solving a label-propagation based optimization task, which
improves the matching of cross-domain marginal and con-
ditional feature distributions. As verified in our experi-
ments, the proposed method not only exhibits improved do-
main adaptation ability, it also outperforms several state-of-
the-art unsupervised domain adaptation approaches in terms
of cross-domain visual classification performance.
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Figure 1. Overview of our proposed method for unsupervised domain adaptation. Note that different colors indicate the class labels, while
xs and xt denote data in source and target domains, respectively.

We now summarize the contributions of this paper:

• When adapting of cross-domain feature distributions
for domain adaptation, we exploit the local structural
information of the target-domain data. With the la-
bel information inferred from the source domain, ad-
ditional data discriminating capabilities can be intro-
duced. (Section 2)

• We verify the capability of our method in adapting
cross-domain distributions. Compared to [16, 17, 18],
improved performance can be observed by our pro-
posed method. Our approach also performs favorably
against the scenarios in which a substantial amount of
ground truth labels from the target domain are avail-
able. (Section 4)

• In our experiments, we conduct experiments on several
cross-domain image classification datasets, and verify
the effectiveness of our method. We show that our
method is able to achieve promising recognition per-
formance, and it outperforms several state-of-the-art
unsupervised domain adaptation methods. (Section 4)

2. Our Proposed Method
2.1. Motivation

We first start from the problem definition, and introduce
the notations which will be used in the following of this pa-
per. Let DS = {(xs

1, y
s
1), . . . , (xs

M , y
s
M )} = {XS ,yS},

where XS ∈ Rd×M represents M d-dimensional data in
the source domain, and each entry in yS ∈ RM×1 in-
dicates the corresponding label (from 1 to C). On the
other hand, we have N unlabeled instances observed in
the target domain (with the same feature dimension), i.e.,
DT = {xt

n}
N
n=1 = XT ∈ Rd×N . Thus, we determine the

cross-domain data matrix as X = [XS ,XT ] ∈ Rd×(M+N).
With the assumption that both source and target domains
contain data of the sameC classes of interest, the goal of our

work is to predict the label vector yT ∈ RN×1 for classi-
fication purposes, while each element in yT is the assigned
class label for the corresponding instance in the target do-
main.

In this paper, we perform transfer feature learning for
unsupervised domain adaptation (i.e., only labeled and un-
labeled data are available in source and target domains, re-
spectively). We not only eliminate domain differences for
associating cross-domain data, we also need to leverage la-
bel information from source to target domains for recogni-
tion purposes. To address the above issues, we propose and
integrate two components highlighted below, which will be
detailed in Sections 2.2 and 2.3, respectively:

i) Adaptation of joint feature distributions. Let
PS(XS) and PT (XT ) as the marginal distributions of data
in source and target domains, respectively, and we have
PS(yS |XS) and PT (yT |XT ) as the corresponding con-
ditional distributions. As noted in [18, 16], we typi-
cally observe PS(XS) 6= PT (XT ) and PS(yS |XS) 6=
PT (yT |XT ) for cross-domain data. Thus, the goal of do-
main adaptation is to eliminate the domain bias, so that both
marginal and conditional distributions can be matched, and
recognition of target-domain data can be performed accord-
ingly. A major contribution of our work is the ability to
match cross-domain conditional distributions, given only
unlabeled data XT in the target domain.

ii) Exploitation of cross-domain data with label and
structural consistency. We advance the technique of label
propagation [27] for domain adaptation. More specifically,
we utilize label information inferred from the source do-
main and observe the target-domain data structure for per-
forming adaptation. This allows us to tackle the unsuper-
vised domain adaptation problem with improved recogni-
tion of target-domain data.

2.2. Distribution Adaptation

As highlighted in Section 2.1, the primary goal of this
work is to match both marginal and conditional feature dis-



tributions of cross-domain data, so that data in the target
domain can be classified accordingly. However, as noted
in [16], since the modeling of conditional distributions
P (yS |XS) and P (yT |XT ) is not explicitly applicable, an
alternative way is to observe and adapt class-conditional
distributions P (XS |yS) and P (XT |yT ) based on their suf-
ficient statistics.

In our work, we aim at determining a feature transfor-
mation Φ for cross-domain data, so that both PS(Φ(XS))
≈ PT (Φ(XT )) and PS(Φ(XS)|yS)≈ PT (Φ(XT )|yT ) can
be satisfied. For simplicity, we apply empirical criteria of
MMD [11] for adapting the above distribution. To be more
precise, we need to minimize the difference between fea-
ture distributions is calculated by the distance between data
means in a reproducing kernel Hilbert space (RKHS):

Dist(PS(XS), PT (XT )) +Dist(PS(XS |yS), PT (XT |yT )) =∥∥∥∥∥ 1

M

M∑
i=1

φ(xs
i )−

1

N

N∑
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φ(xtj)

∥∥∥∥∥
2

H

+

C∑
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1
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(c)
T

φ(xt
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,

(1)

whereDistmeasures the distance between feature distribu-
tions, and φ is the feature transformation induced by univer-
sal kernels. In (1), we have D(c)

S = {xs
i : ysi = c} indicate

source-domain data of class c, and D̂(c)
T = {xt

i : ŷti = c}
as those in the target domain with the same predicted label.
It is worth repeating that, for unsupervised domain adapta-
tion, a major challenge is to transfer the label information
from source to target domains when reducing domain bi-
ases. Later in Section 2.3, we will explain how we deter-
mine the label information for target-domain data, so that
the adaptation of the above conditional distributions can be
achieved.

By kernel tricks, we rewrite (1) as tr(KL) +∑C
c=1 tr(KLc), where K ∈ R(M+N)×(M+N) indicates the

kernel matrix of data matrix X, and

Lij =

{ 1
M2 , xi,xj∈DS
1

N2 , xi,xj∈DT
−1
MN

, otherwise.

(Lc)ij =



1
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S |
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,
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S

0, otherwise.

As noted in [18], the above optimization problem with
respect to K would require high computational costs. In our

work, we utilize the empirical kernel map [21] as suggested
in [18, 16], and derive a lower-dimensional space of fixed
K by determining the projection matrix W∈R(M+N)×k in-
stead (k << d). As a result, we have the objective function
as:

min
W

tr(W>KLK>W) +

C∑
c=1

tr(W>KLcK
>W) + λ‖W‖2F

s.t. W>KHK>W = I.

(2)
It can be seen that, the first two terms in (2) are associ-

ated with the adaptation of marginal and conditional distri-
butions, respectively. The sum of the these two terms cor-
responds to the MMD distance between the cross-domain
data. The third term in (2) regularizes the projection W,
weighted by parameter λ. The centering matrix H in the
constraint of (2) is defined as H = I − 1

M+N 1, in which
1 is the matrix of ones. As noted in [18, 16], adding this
constraint would preserve the data variance after adaptation,
which implies and introduces additional data discriminating
ability into the learned model W. By applying Lagrange
techniques, we can rewrite the objective function of (2) into
the following Lagrangian function:

L(W,Ψ) ≡ tr(W>(KLK> + K

C∑
c=1

LcK
> + λI)W)

+ tr((I−W>KHK>W)Ψ),

(3)

where Ψ is a diagonal matrix with Lagrange Multipliers
(i.e., Ψ = diag(ψ1, ..., ψk)∈Rk×k). By setting the deriva-
tive of (3) with respective to W equal to zero, we approach
the original optimization problem by solving the following
generalized eigen-decomposition problem:

(KLK> + K

C∑
c=1

LcK
> + λI)W = KHK>WΨ. (4)

Taking the k−smallest eigenvectors from (4) would sat-
isfy (2), which determines the optimal solution of W (re-
call that k << d). Once W is obtained, we project cross-
domain data into the resulting k-dimensional latent space
i.e., Z = W>K = [ZS ,ZT ]∈Rk×(M+N), where ZS and
ZT represent the transformed data projected from source
and target domains, respectively. In other words, the data
matrix Z can be viewed as adapted cross-domain data with
matched marginal and conditional distributions.

2.3. Exploiting Label and Structural Consistency
for Unsupervised Domain Adaptation

Due to the lack of label information in the target domain,
matching of cross-domain marginal and conditional distri-
butions would be a challenging task. In particular, without
proper prediction of class labels for the target-domain data
D̂T , adapting the conditional distributions for cross-domain
data cannot be achieved.



To solve the above problem, we propose to take the
knowledge which is exploited across domains into the adap-
tation process, with the goal of suppressing domain biases
with cross-domain recognition guarantees. To begin with,
we apply SVM-based classifiers [2, 24] for estimating the
class posterior probability of the transformed target-domain
data ZT . For the setting of unsupervised domain adaptation,
these SVM classifiers are trained by labeled source-domain
data in the transformed feature space (i.e., ZS). Based on
the estimated posterior probabilities, we construct an uncer-
tain label matrix Y∈RN×C for target-domain instances, in
which each entry is defined as:

Yij =

2p(yti = j|zti )− 1,

{
p(yti = j|zti ) > δ

p(yti = j|zti ) = max
c
p(yti = c|zti )

−1, otherwise.
(5)

It is worth noting that, the posterior probability p(yti =
j|zti) indicates how likely the projected target-domain in-
stance zti belongs to class j. Obviously, we have −1 6
Yij 6 1, and a larger Yij value implies that the instance
of interest is of the corresponding class. We note that, the
parameter δ controls the number of uncertain labels to be
transferred from the source domain (i.e., the aggressiveness
of label propagation). For simplicity, we simply set δ equal
to the lower quantile (i.e., 25%) of the maximum posterior
probabilities observed from each target-domain instance. In
other words, 75% of target-domain data will be assigned the
predicted uncertain labels for adaptation purposes. Later in
the experiments, we will provide additional remarks on our
choice of δ.

Once the above uncertain label matrix is constructed,
we effectively set a semi-supervised setting for the target-
domain data. However, unlike standard semi-supervised
learning problems in which a portion of the data are given
specific class labels, we do not directly take the labels pre-
dicted by source-domain data due to possible domain mis-
match. In other words, we cannot directly apply existing
semi-supervised techniques, since they cannot deal with
data collected from different domains. This is the reason
why the use of our uncertain label matrix together with fea-
ture adaptation is preferable, which offers additional robust-
ness in adapting and assigning class labels.

In addition to the use of uncertain labels predicted from
the source domain, we further take the data structure ob-
served in the target domain into our adaptation process.
This allows us to better determine the target-domain labels
for improved recognition. To observe target-domain struc-
tural information, we advance graph-based semi-supervised
learning by constructing a k-nearest neighbors (k-NN)
graph over target-domain data [27, 19, 6]. We note that,
we choose to construct this k-NN based graph in the trans-
formed space (i.e., ZT ). The use of the transformed space
not only allows us to better observe data structural informa-

Algorithm 1 Our Proposed Model
Input: Kernel matrix K of cross-domain data, labels yS of

source-domain data
1. Initialize D̂(c)

T as ∅
while not converged do

2. W ← Distribution adaptation (D̂
(c)
T , ŷT ) in (4) and let

[ZS ,ZT ] = W>K
3. Assign Y(0) by classifiers trained by ZS and (5)
4. Construct the k-NN graph matrix E and S within target
domain ZT

5. (D̂(c)
T , ŷT)← label propagation (Y(0),S) in (7)

end while
6. yT ← ŷT

Output: yT as labels of target-domain data

tion due to reduced feature dimensions, the learned transfor-
mation model W also exhibits capabilities in eliminating
biases across source and target domains. This is why im-
proved recognition of target-domain data can be expected.

Based on the above observations, we calculate the dis-
tance between target-domain data pairs as d(zti, z

t
j) =

‖zti − ztj‖, and apply Gaussian kernels for convert-
ing such distances into similarity scores: s(zti, z

t
j) =

exp(−d(zti, z
t
j)/2σ

2). With this structural information de-
termined, the k-NN based similarity matrix E∈RN×N can
be formulated, in which each entry is:

Eij =

{
s(zt

i, z
t
j), if zt

j is one of k-NN of zt
i and i 6= j

0, otherwise.
(6)

With the uncertain label matrix Y and the structural sim-
ilarity matrix E of target-domain data obtained, we advance
the technique of label propagation [27] for updating the la-
bel information for each instance in the target domain. We
note that, label propagation exhibits capabilities in incor-
porating (partial) label and structural information for de-
termining the final labels for each instance of interest. In
our work, we construct the matrix S = D−1/2ED−1/2,
in which D is a diagonal matrix that dii =

∑
j Eij . We

perform label propagation which iteratively propagates and
updates the labels of each instance via the constructed
similarity graph until convergence: Y(t+1) = αSY(t) +
(1−α)Y(0) with the regularization parameter α∈(0, 1] and
Y(0) = Y. According to [27], the optimal label matrix Y∗

has the following closed-form solution:

Y∗ = (I− αS)−1Y(0). (7)

Once Y∗ is derived, the final label of each target-domain
instance is determined by ŷti = argmaxj6C Y

∗
ij based on

the winner-take-all strategy.



2.4. Adaptation and Recognition via Iterative Opti-
mization

Finally, we integrate the techniques and learning models
presented in Sections 2.2 and 2.3 for performing joint unsu-
pervised domain adaptation and cross-domain recognition.
The proposed method is summarized in Algorithm 1. It can
be seen that, except for the initialization stage which only
adapts marginal distributions of cross-domain data, the op-
timization process take both marginal and conditional dis-
tributions into consideration, while the class labels are up-
dated from the previous adaptation iterations. Later in the
experiments, we will show that the proposed method con-
verges to the optimal solution in terms of both MMD and
accuracy in few iterations, which verify the effectiveness of
the proposed model for domain adaptation and recognition.

3. Related Works

Recently, domain adaptation has attracted the attention
from researchers in the fields of machine learning [13, 25,
4], speech and language processing [3, 26, 1], and computer
vision [16, 9, 7, 20, 10, 8]. Among different adaptation ap-
proaches, MMD-based feature adaptation approaches have
been studied in [18, 16, 7, 8, 13], which aim at matching
cross-domain information (e.g., data or class-conditional
means) for adaptation and recognition purposes.

For unsupervised domain adaptation, since only unla-
beled data is available in the target domain, modeling of
the associated class-conditional feature distributions is not
a trivial task. Previously, researchers chose to model and
match cross-domain marginal distributions only. For ex-
ample, Huang et al. [13] proposed kernel mean matching
by weighting source-domain data, so that the mean differ-
ence between cross-domain data in a predetermined ker-
nel space can be minimized. To provide additional ro-
bustness, Pan et al. [18] proposed Transfer Component
Analysis (TCA) to determine low-dimensional embeddings
for cross-domain data, and they performed matching of
cross-domain marginal distributions in the derived lower-
dimensional feature space. Based on TCA, Long et al. [17]
further proposed Transfer Feature Matching (TJM) combin-
ing instance reweighting and distribution adaptation tech-
niques for further improving the performance.

However, adapting marginal distributions only would not
be expected to be sufficient for relating cross-domain data,
especially if recognition of target-domain data is desirable.
To address this issue, Long et al. [16] proposed Joint Distri-
bution Adaptation (JDA) to match both marginal and condi-
tional feature distributions. To deal with unsupervised do-
main adaptation settings, they applied the outputs of source-
domain classifiers as the pseudo labels of target-domain
data, and thus the conditional distributions can be observed
accordingly. Since the direct use of such pseudo labels

might not be preferable due to possible domain mismatch,
we not only transfer label information but further exploit
target-domain structural information during the adaptation
process. Inspired by recent semi-supervised learning works
of [6, 19, 27], we approach the problem of unsupervised do-
main adaptation by solving a label-propagation based op-
timization task, which allows us to better associate cross-
domain marginal and conditional feature distributions. By
jointly solving the adaptation and recognition tasks in a uni-
fied framework, improved recognition performance can be
expected in the target domain.

4. Experiments

4.1. Datasets and Settings

MNIST and USPS: We first consider cross-domain digit
recognition using MNIST [15] and USPS [14] datasets.
MNIST contains a training set of 60,000 images and a test
set of 10,000 images, while each image is of size 28×28
pixels. On the other hand, each image in USPS is of size
16×16 pixels, and a total of 7291 and 2007 images are
available for training and testing, respectively. Figure 2(a)
shows example images of these two datasets.

In our experiments, we follow the same setting as [16]
did. We randomly sample 2000 and 1800 images from
MNIST and USPS (scaled to the same 16×16 pixels), re-
spectively, and take pixel intensities as the features. Two
cross-domain pairs are considered: MNIST → USPS and
USPS→ MNIST. Take MNIST→ USPS for example, we
have MNIST as the source domain with 2000 labeled train-
ing data, and USPS as the target domain with 1800 instances
to be recognized. Similar remarks can be applied to USPS
→MNIST.

Caltech-256 and Office: For experiments on cross-
domain object recognition, we consider the Caltech-
256 [12] and Office [20, 9] datasets. The former consists
of object images of 256 categories (with at least 80 in-
stances per category), while the latter contains 31 objects
categories collected from three different sub-datasets: Ama-
zon, DSLR, and webcam. Following the same settings ap-
plied in [16, 7, 8], we select the 10 over-lapping object cat-
egories of Caltech-256 and Office for experiments, and pro-
duce four different domains of interest: Caltech (C), Ama-
zon (A), DSLR (D), and webcam (W). As a result, a total
of 12 different cross-domain pairs will be available (e.g.,
C→ A, C→W, etc.).

To describe each object image in the Caltech-256 and Of-
fice datasets, we apply theDeCAF6 features [5]. As shown
in [5], these features are able to achieve very promising re-
sults for image classification. With the use ofDeCAF6 fea-
tures, each image will be converted into a 4096-dimensional
representation for training and testing.

It is worth noting that, since only unlabeled (test) data
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Figure 2. Example images of (a) MNIST + USPS datasets and (b) Caltech-256 + Office datasets.

Table 1. Comparisons of recognition rates (%) for cross-domain
digit recognition. Note that S and T denote source and target do-
mains, respectively.

S→ T MNIST→ USPS USPS→MNIST
Direct 50.1 33.2

TCA [18] 52.7 45.7
JDA [16] 68.5 56.0
TJM [17] 63.5 52.7

Ours* 70.6 62.7
Ours 72.3 65.5

are available in the target domain, one cannot apply cross-
validation to select the parameters for the learning models.
For fair comparisons, we follow the same parameter set-
tings as [16] did, and set λ = 0.1 and 1 for digit and object
datasets, respectively. When performing data embedding,
we choose k = 100 as the reduced feature dimension. In
addition, we follow the recent works of [16, 18] and apply
the linear kernels for constructing the kernel matrix K. For
simplicity, we fix the parameter α = 0.5 for label propaga-
tion, and set the number of neighbors (for the graph-based
similarity matrix E) as 15 for all our experiments.

4.2. Evaluation

For cross-domain digit recognition, we consider the ap-
proaches of TCA [18], JDA [16] and TJM [17]. It is worth
repeating that, JDA also adapts both marginal and condi-
tional distributions for unsupervised domain adaptation as
we do. For baseline approaches, we consider the direct use
of SVMs trained by source-domain data in the original fea-
ture space (i.e., no domain adaptation). Table 1 lists the
recognition results of cross-domain digit recognition.

Recall that, when using our proposed method, recog-
nition is achieved when the domain adaptation process is
complete (i.e., via label propagation). To show that we can
also train the SVM classifiers in the derived transformed
feature space using projected labeled source-domain data,
and apply such classifiers to recognize the projected target-
domain data as other recent methods do (e.g., TCA and
JDA), we provide additional results of ours in Table 1 (de-
noted as Ours*). Nevertheless, as shown in this table, our

methods clearly outperformed baseline and state-of-the-art
methods for the task of cross-domain digit recognition.

As for cross-domain object recognition, we further
consider another state-of-the-art method of Landmarks
(LM) [7, 8]. We present and compare the recognition per-
formance of different methods in Table 2. It is worth noting
that LM can only be applied to 9 out of 12 cross-domain
pairs. This is because that, as noted in [8], LM requires
a sufficient amount of source-domain data for adaptation,
and it cannot be applied to the cases when DSLR is applied
as the source domain. Our proposed method does not have
this limitation. More importantly, from the results presented
in this table, we see that our method significantly outper-
formed all others in all cases. We also visualize the table in
Figure 3 for more clear interpretation. This supports the use
of our proposed model for unsupervised domain adaptation.

4.3. Remarks on Adapting Cross-Domain Feature
Distributions

As discussed in Section 2.3, a major contribution of
our approach is its ability in exploiting label and structure
consistency, which allows us to better match cross-domain
conditional distributions for improved domain adaptation.
For verification purposes, we consider different amounts
of ground-truth labeled data available in the target domain
for solving (2). To be more precise, we utilize different
amounts of target-domain instances and their labels to con-
struct Lc in (2). With more labeled target-domain data ob-
served for adaptation, the improvements of cross-domain
recognition can be expected. Figure 4 compares our results
with those with varying amounts of labeled target-domain
instances on selected cross-domain datasets. It can be seen
that our method with the challenging unsupervised setting
actually achieved comparable results with those utilizing a
large amount of ground truth target domain labels for adap-
tation. As a result, the capability of our method in associ-
ating cross-domain data distributions for unsupervised do-
main adaptation can be successfully verified.



Table 2. Comparisons of recognition rates (%) on Caltech256 + Office datasets.

S→ T C→ A D→ A W→ A A→ C D→ C W→ C A→ D C→ D W→ D A→W C→W D→W Average

Direct 91.86 72.13 74.63 82.64 60.20 64.56 81.53 86.62 99.36 74.58 79.66 96.61 80.36

TCA [18] 90.21 87.68 82.67 85.04 79.70 77.38 82.16 87.26 98.22 76.94 81.02 97.02 85.44

JDA [16] 92.02 90.28 87.02 86.33 83.88 83.64 88.54 90.36 100 83.78 85.08 97.98 88.91

LM [8] 92.28 - 86.01 84.42 - 70.53 84.71 89.17 99.36 84.07 85.42 - -

TJM [17] 92.17 88.73 83.51 85.04 81.03 80.14 83.44 87.26 99.36 80.34 81.36 97.02 86.62

Ours* 92.80 92.17 92.07 87.44 86.02 86.02 91.08 93.63 100 87.12 89.67 98.63 91.16

Ours 94.26 92.37 93.31 87.88 86.19 87.97 94.9 95.26 100 88.81 91.18 99.32 92.62
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Figure 3. Classification Accuracy (%) on Office and Caltech datasets.

4.4. Remarks on Convergence and δ

As noted in Section 2.4, we iteratively solve the proposed
model for adapting cross-domain data. To assess its conver-
gence property, Figures 5(a) and (b) show the recognition
accuracy and MMD distance with increasing iteration num-
bers, respectively. Recall that, the MMD distance is calcu-
lated by summing up the first two terms in (2) using target-
domain data with ground truth labels. Due to space limit,
only selected cross-domain data pairs are presented. From
the above figures, we see that both accuracy and distance
converged within 5-10 iterations during optimization.

We comment on the parameter δ in (5). Recall that, δ de-
termines the aggressiveness of label propagation by control-
ling the number of uncertain labels to be transferred from
the source domain. In our experiments, we simply set δ
as the lower quantile (i.e., 25%) of the maximum posterior
probabilities observed from each target-domain instance,
which allows 75% of target-domain data to be assigned
uncertain labels during the adaptation process. Although
a larger δ value would imply fewer (and thus less noisy)
target-domain instances with uncertain labels for propa-
gation, the adaptation capability would be limited due to
less information adapted from the source domain. In other
words, the choice of δ is a tradeoff between adaptation and

Table 3. Comparisons of runtime estimates (in seconds) of differ-
ent methods using A→W domain pair. Note that JDA, TJM, and
ours all converged at 10 iterations.

TCA [18] JDA [16] LM [8] TJM [17] Ours

4.15 (s) 34.12 (s) 1204 (s) 36.17 (s) 45.41 (s)

propagation.
Figures 5(c) and (d) compare the recognition perfor-

mance of two example domain pairs over different δ values.
It can be seen that, while extreme δ (i.e., close to 0 or 1) can-
not achieve satisfactory performance, our δ choice (based
on the above guideline) was able to achieve improved re-
sults when comparing to state-of-the-art methods. Intu-
itively, the choice of δ should be domain dependent. For ex-
ample, if the mismatch between source and target domains
is marginal, one would expect that a small δ would be suf-
ficient for performing adaptation. The study of domain bi-
ases and its effect on adaptatoin/propagation aggressiveness
would be among our future research directions.

Finally, we compare the computation timE of different
methods on the domain pair of A → W in Table 3. The
runtime estimates were performed on an Intel Core i5 PC
with 2.6 GHz CPU and 8G RAM. It can be seen that the
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Figure 4. Verification of distribution adaptation on (a) W → A, (b) D → C, (c) C → D and (d) C → W. The vertical axis denotes
the accuracy (%), and the horizontal axis indicates the percentage of ground-truth labels used the target domain. Note that only selected
cross-domain data pairs are presented due to space limit.
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Figure 5. Convergence analysis and parameter sensitivity. The former is verified by reporting (a) recognition accuracy and (b) MMD
distance. The latter presents the recognition results over different δ values on (c) A→W and (d) USPS→MNIST. Note that the vertical
dash line indicate the δ value which we determine (see Section 2.3).

computation time of our proposed approach (including iter-
ative optimization and label propagation) was comparable
to those of state-of-the-art methods, while the recognition
performance was greatly improved.

5. Conclusion

We proposed an unsupervised domain adaptation based
on transfer feature learning. In addition to matching
both marginal and conditional distributions of cross-domain
data, our proposed model further leverages rich label and
structural information across domains. This allows us
to achieve improved adaptation and recognition of cross-
domain data. Our experiments on cross-domain digit and
object recognition confirmed that our proposed model per-
formed favorably against state-of-the-art domain adapta-
tion methods. Future research directions include landmark
(i.e., instance) selection for cross-domain data and domain-
adaptive label propagation, which could further improve the
domain adaptation and recognition performance.
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