

Domain Adaptive Self-Taught Learning for Heterogeneous Face Recognition

Cheng-An Hou, Min-Chun Yang, Yu-Chiang Frank Wang Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

Motivation

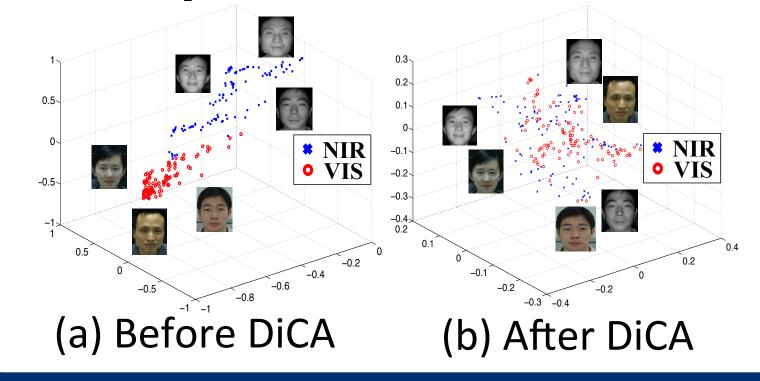
- Heterogeneous face recognition
 (e.g., sketch-to-photo or NIR-to-VIS face recognition)
- Utilize external data (i.e., subjects not of interest) across modalities for domain adaptation
- No cross-domain pairwise correspondences needed

Overview of Our Approach Probe / Test External Data Dica Subspace Domain-Independent Dictionary Common Feature Space VIS Target-Domain Data Source-Domain Data NIR

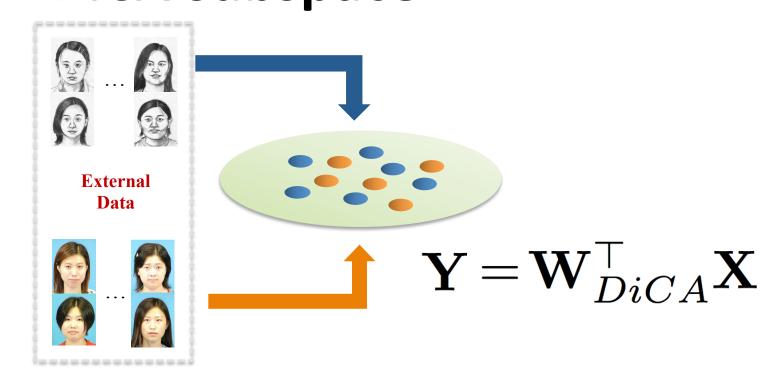
Domain-independent Components Analysis

Goals

- ✓ Find a subspace to associate images across different domains
- ✓ Learn the transformation: **W**_{DiCA}


Observations/Ideas

- ✓ Domain difference dominates the data variance (see Fig. (a))
- ✓ Observe the MMD (Maximum Mean Discrepancy) distance:


$$d(\mathbf{w}_i) = \|\frac{1}{n_s} \sum_{x_j \in D_s} \mathbf{w}_i^\top \mathbf{x}_j - \frac{1}{n_t} \sum_{x_k \in D_t} \mathbf{w}_i^\top \mathbf{x}_k \| \underbrace{\mathbf{w}_i^\top \mathbf{x}_k}_{\text{outbound}} \| \underbrace{\mathbf{w}_i^\top \mathbf{x}_k}_{\text{$$

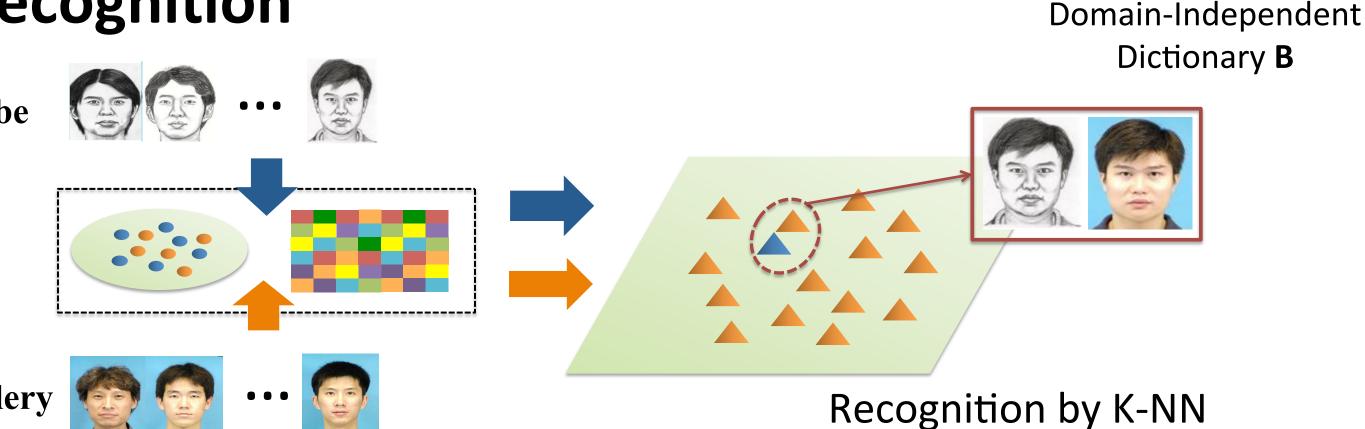
✓ Calculate \mathbf{W}_{DiCA} by performing PCA & disregarding PCs with large $d(\mathbf{w})$

Example

DiCA subspace

Domain Adaptive Dictionary Learning

Motivation


- ✓ DiCA subspace is constructed from external data.
- ✓ When recognizing the subjects of interest, need a better feature representation in the DiCA subspace.

Goals

✓ Advance the technique of self-taught learning for observing a dictionary in the DiCA subspace

$$\min_{\mathbf{B}, \mathbf{A}_e} \|\mathbf{Y} - \mathbf{B}\mathbf{A}_e\|_F^2 + \lambda \|\mathbf{A}_e\|_1, \quad \text{s.t.} \|\mathbf{b}_i\|_2 \le 1, \forall i,$$

Recognition

Experiments

Settings

✓ Sketch-Photo:

- 200 images in external data (100 sketches & 100 photos)
- 100 subjects/images in gallery
- 100 subjects/images in probe

✓ NIR-VIS:

- 3000 images in external data (1500 NIR & 1500 VIS)
- 358 subjects/images in gallery
- ~6200 images in probe

Recognition Performance

- necognition i cironnance			
Methods	Recognition Rate (%)	Data Pairs	
CCA	94.6	Υ	
BLM	94.2	Υ	
PLS	93.6	Υ	
Huang et al. [2]	97.2	Υ	
PCA + self-taught learning	97.4	N	
Ours	99.4	N	
Sketch-Photo (CUHK)			

Methods	Recognition Rate (%)	Std (%)	
PCA	7.16	0.52	
HCA [1]	23.07	1.12	
HCA + Sym [1]	23.70	1.89	
PCA + self-taught learning	26.20	1.31	
HCA + self-taught learning	29.63	1.89	
Ours	32.58	1.47	
NIR-VIS (CASIA 2.0)			

Conclusions

- We presented a domain adaptive self-taught learning framework for heterogeneous face recognition.
- We proposed a DiCA algorithm, which is able to associate face image data across different domains.
- We do not require cross-domain data correspondence nor label information during domain adaptation (for external data).
- We advanced the strategy of self-taught learning for better representing cross-domain images and improving recognition.

Reference

[1] S. Z. Li, D. Yi, Z. Lei, and S. Liao, "The CASIA NIR-VIS 2.0 Face Database", in IEEE CVPR Workshops, 2013

[2] D.-A. Huang and Y.-C. F. Wang, "Coupled dictionary and feature space learning with applications to cross-domain image synthesis and recognition," in *IEEE ICCV*, 2013.