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Motivation Overview of Our Approach

B Heterogeneous face recognition
(e.g., sketch-to-photo or NIR-to-VIS face recognition)
B Utlize external data (i.e., subjects not of interest)
across modalities for domain adaptation
B No cross-domain pairwise correspondences heeded
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Domain-independent Components Analysis Domain Adaptive Dictionary Learning
B Goals B Motivation
v" Find a subspace to associate images across different domains v DiCA subspace is constructed from external data.
v' Learn the transformation: W, v When recognizing the subjects of interest, need a better
, feature representation in the DiCA subspace.
B Observations/ldeas P P
v" Domain difference dominates the data variance (see Fig. (a)) B Goals
v Observe the MMD (Max'm“m Mean Discrepancy) distance: v Advance the technique of self-taught learning for
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(a) Before DICA (b) After DiCA Recognition by K-NN
Experiments Conclusions
N Setl'ings B Recognition Performance _ ]\cNehprtesented a dofmaln adapﬁ;e self-taught learning framework
v ] : e ethods ] Recognition Rate (%) . or heterogeneous face recognition.
Sketch PhOtO. CCA — Rate “ B We proposed a DiCA algorithm, which is able to associate face
- 200 images in external data BLM 94.2 Y image data across different domains.
(100 sketches & 100 photos) PLS 93.6 Y B We do not require cross-domain data correspondence nor label
- 100 subjects/images in gallery n +Hslﬁzfaitgi|{ I[ezirning z;z :I information during domain adaptation (for external data).
- 100 subjects/images in probe oure 00.4 N B \WWe advanced the strategy of self-taught learning for better
v" NIR-VIS: Sketch-Photo (CUHK) representing cross-domain images and improving recognition.
- 3000 images in external data  Methods | Recognition Rate (%) |  Std (%)
(1500 NIR & 1500 VIS) H(';j‘[‘ll 273-1067 j-i;
- 358 subjects/images in gallery HCA + Sym [1] 23.70 1.89 REfe rence
-~6200 images in probe PCA + self-taught learning 26.20 1.31 [1] S. Z. Li, D. Yi, Z. Lei, and S. Liao, “The CASIA NIR-VIS 2.0 Face Database”, in IEEE CVPR
HCA + self-taught learning 29.63 1.89 Workshops, 2013
Ours 37 Eg e [2] D.-A. Huang and Y.-C. F. Wang, “Coupled dictionary and feature space learning with

applications to cross-domain image synthesis and recognition,” in IEEE ICCV, 2013.
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